

A REGIOSELECTIVE SYNTHESIS OF 6-ARYLAZO-7-HYDROXYCOUMARINS AND 5'-ARYLAZOPSORALENS.

R.V. Rozhkov, A.V. Vasilyev, V.F. Traven*, D.I. Mendelev University of Chemical Technology of Russia, Moscow 125190, Russia;
E.A. Carberry, Southwest State University, Marshall, MN 56258.

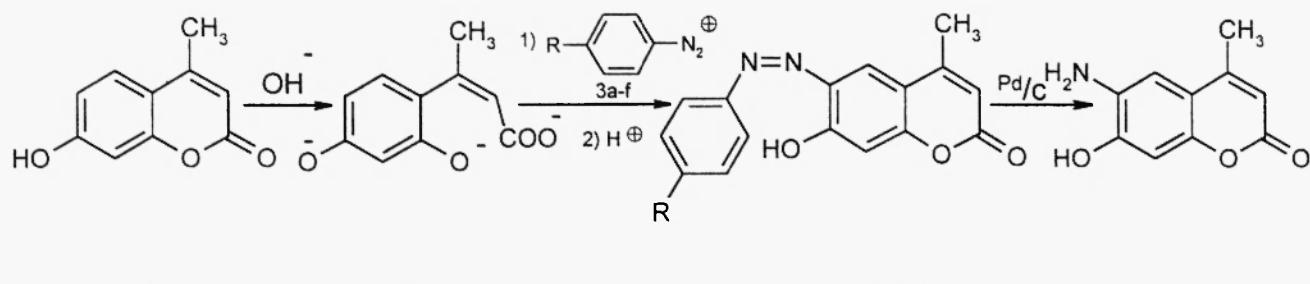
Abstract: Azocoupling reactions of 7-hydroxycoumarins and psoralens with para-substituted aryldiazonium tetrafluoroborates have been studied in the presence of sodium hydroxide solution. The reaction is highly regioselective to yield only 6-arylazo-7-hydroxycoumarins and 5'-arylazopsoralens. The key step of the reaction is pyrone ring opening which activates positions 6 and 5' of the coumarins and psoralens respectively in electrophilic substitution. Reduction of 6-arylazo-7-hydroxy-4-methyl coumarin provides a convenient route to 6-amino-7-hydroxy-4-methylcoumarin with 70% overall yield.

Introduction

Many 7-hydroxycoumarin derivatives show anticancer [1,2], anticoagulant [3] and antibacterial [4] activities. Some furocoumarins such as 5-methoxysoralen, 8-methoxysoralen and 4,8,5'-trimethylpsoralen are currently used in PUVA therapy [5] to treat a variety of skin diseases, such as psoriasis, mycosis fungoides, etc. Therefore, chemical transformations of 7-hydroxycoumarins and furocoumarins are much of interest.

Many electrophilic substitution reactions of 7-hydroxycoumarins, halogenation, nitration, formylation, azocoupling in the presence of weak base as well as Claisen and Fries rearrangements yield preferably 8-substituted 7-hydroxycoumarins [6-13]. 6-Substituted derivatives can be prepared by halogenation [14], Claisen rearrangement [15], Elb's oxidation [16] and base-catalysed cyclization of acylmethyl ethers of 7-hydroxycoumarins [17, 18] via the pyrone ring opening step.

Electrophilic substitution reactions of psoralens, e. g. Vilsmeier formylation and chloromethylation result in 4'-substituted psoralens [19].


We have studied the azocoupling reaction of 7-hydroxycoumarins and psoralens based on the pyrone ring opening step. Psoralens have not been studied yet in this reaction. Azopsoralens seem to be a new series of biologically active photosensitive compounds.

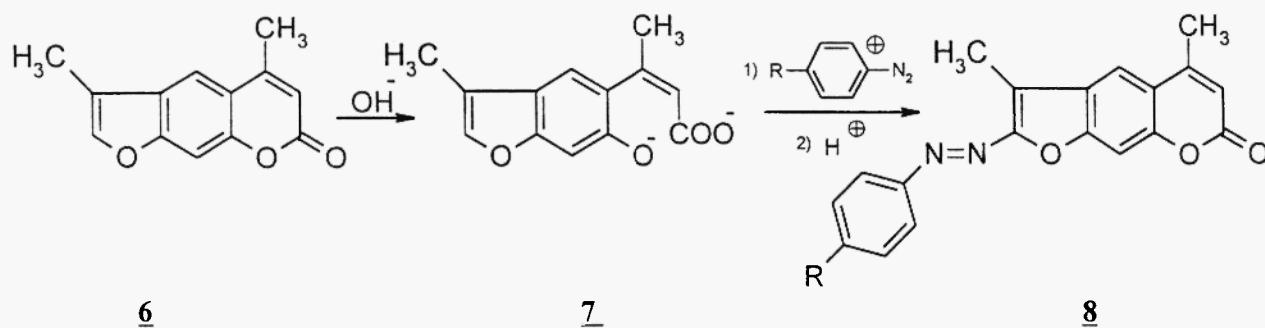
Results and discussion

We carried out the azocoupling reaction of 7-hydroxy-4-methylcoumarin **1** with several para-substituted aryldiazonium fluoroborates in 5% aqueous sodium hydroxide solution (Scheme 1). The reaction

yields only 6-arylazo-7- hydroxy-4-methylcoumarins **4a-f**. Pyrone ring opening step generates phenoxide anion (Structure **2**) where position 6 is strongly activated. Yields of the reaction depend on substituent in the para-position of aryl diazonium tetrafluoroborate (Table 1).

Scheme 1

Table 1. 6-Arylazocoumarins **4a-f**


R	H	CH ₃	OCH ₃	Cl	Br	NO ₂
compound	4a	4b	4c	4d	4e	4f
Yield, %	80	80	73	28	25	0

Single peaks at 13.1-13.5 ppm are seen in spectra ¹H NMR of phenylazocoumarins **4a-e** in accordance to their o-hydroxy-azo tautomeric forms.

We have studied effect of pyrone ring opening on azocoupling reaction of psoralens as well. Using psoralen **6** and standard azocoupling reaction procedure, we have synthesized series of 5'-arylazopsoralens **8a-e** with good yields (Table 2). Position 5' seems to be much stronger activated than position 8 under ring opening (Scheme 2).

In accordance to this conclusion, our attempts to carry out azocoupling of psoralens in slightly-acidic or neutral conditions failed and starting psoralen was only recovered.

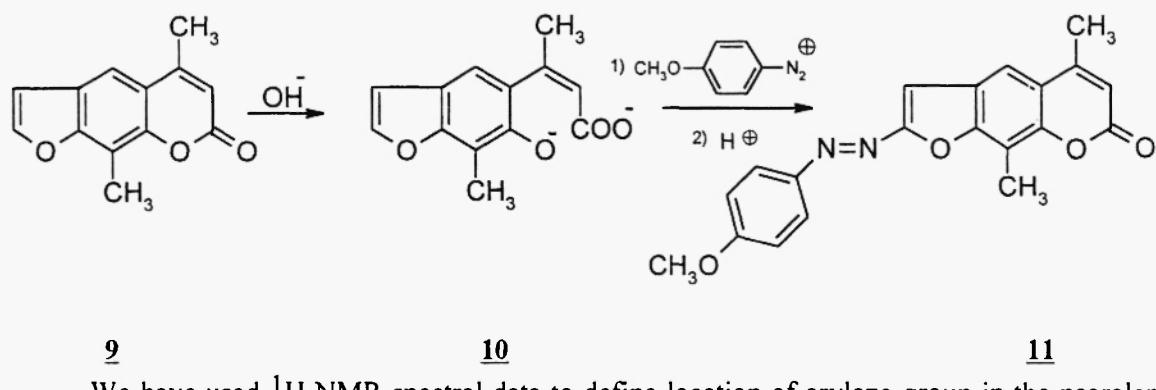

Scheme 2

Table 2. Arylazopsoralens 8 a-d

R	H	CH ₃	OCH ₃	Cl
Compound	8 a	8 b	8 c	8 d
Yield, %	85	82	70	50

We have also compared the effect of pyrone ring opening on reactivity of positions 4' and 5' of psoralen in the azocoupling reaction. Psoralen **9** has been prepared with 30% overall yield by [19]. The azocoupling reaction of psoralen **9** (Scheme 3) in basic conditions starts with pyrone ring opening to produce dianion **10** where position 5' seems to be stronger activated by the phenoxide oxygen group. Azocoupling and acidification steps lead to final product **11** with 75% yield.

Scheme 3

We have used ¹H NMR spectral data to define location of arylazo group in the psoralen **11**. As one can see, introduction of arylazogroup to the position 6 of 4-methyl-7-hydroxycoumarin shifts peak H-5 for 0.7-0.8 ppm down field (Table 3). According to ¹H NMR spectra of compounds **8**, introduction of arylazogroup to the position 5' of 4, 4'-dimethylpsoralen shifts peak H-5 for 0.08-0.17 ppm down field (Table 4).

Table 3. Chemical shifts of proton H-5 in arylazocoumarins **1 and **4a-e****

Coumarin	1	4a	4b	4c	4d	4e
R	H	H	CH ₃	OCH ₃	Cl	Br
H-5	7.38	8.18	8.14	8.10	8.17	8.17
$\delta_{\text{4a-e}} - \delta_1$	0	0.8	0.76	0.72	0.79	0.79

Table 4. Chemical shift of proton H-5 for set of psoralens 6 and 8a-d

Psoralen	6	8a	8b	8c	8d
R	H	H	CH3	OCH3	Cl
H-5	7.68	7.83	7.76	7.76	7.85
<u>δ8a-d-δ6</u>	-	0.15	0.08	0.08	0.17

Therefore, we can expect peak H-5 in the region 7.75-7.84 ppm both for 4'-arylazo and for 5'-arylazopsoralens. On other hand for 4'-arylazopsoralen, proton H-5' should appears at 8.42-8.50 ppm. In 5'-arylazopsoralen ^1H NMR spectrum we can expect peak H-4' at 6.98-7.06 ppm.

Initial psoralen 9 shows peaks of protons H-4', H-5 and H-5' at 6.26, 7.67 and 7.70 ppm respectively. In ^1H NMR spectrum of 11 we found two singlets at 7.33 and 7.77 ppm, which correspond to signals H-4' and H-5 peaks respectively. Peak at 7.33 ppm cannot correspond to proton H-5', because it appears in 4,8-dimethylpsoralen 9 at 7.67 ppm and introduction of electronwithdrawing arylazogroup would shift this signal much more down field.

To find synthetic advantages of azocoupling reactions of coumarin derivatives based on the ring opening we reduced azocoumarin 4a for the amino derivative. Different reductive agents such as zinc powder with HCl, sodium hydrosulfite and hydrogen with 5% Pd on activated carbon catalyst have been used.

Reduction by Zn-HCl in ethanol takes 2-3 hours at 40-45 $^{\circ}\text{C}$. Neutralization of the reaction mixture with aqueous ammonia solution gives aminocoumarin 5 with 45% yield.

Reduction of 4a by sodium hydrosulfite in 20% aqueous ammonia turned to be unsuccessful: it goes slow and provides a poor yield of coumarin 5.

In opposite, reduction by hydrogen on 5% palladium activated carbon in ethanol takes only 3 hours at 40-45 $^{\circ}\text{C}$ and provides aminocoumarin 5 with 85% yield. Earlier coumarin 5 has been prepared with 14% overall yield by nitration of coumarin 1 followed by separation of 6- nitro (28%) and 8-nitro (32%) coumarins and reduction of 6-nitro derivative [17].

Experimental

^1H NMR spectra were scanned with 200 MHz Varian Gemini-2000 instrument. Chemical shifts are given in ppm, splitting constants J are given in Hz. Mass spectra were scanned on a SSQ- 710 (Finnigan MAT) spectrometer at the energy of ionizing electrons equals to 70 eV. Thin layer chromatography was done on Silufol UV- 254 sheets with chloroform or chloroform- ethylacetate mixture as eluent. All melting points are uncorrected.

Azocoupling of hydroxycoumarins (general procedure).

A mixture of **1** (10 mmol) and aryl diazonium tetrafluoroborate (12 mmol) with 25 ml 5 % NaOH solution was stirred at 0-5 °C for 2-4 hours. Then the reaction mixture was acidified with hydrochloric acid to pH=5. Formed precipitate was filtered off and purified by recrystallization from ethanol or by column chromatography (eluent-chloroform, silicagel 100-250 mesh). Yields, melting points and ¹H NMR data of prepared coumarins **4a-e** are listed below.

4a, 7-hydroxy-4-methyl-6-(phenylazo)coumarin, yield 80 %, mp 216-218°C;

¹H NMR: δ 2.49(d, 3H, J_{CH₃}, H₃=1.2, 4-CH₃); 6.20(q, 1H, J_{H₃, CH₃}=1.2 Hz, H-3); 6.91(s, 1H, H-8); 7.50-7.60(m, 3H, 2H-3'+H-4'); 7.90-8.00(m, 2H, H-2'); 8.18(s, 1H, H-5); 13.35(s, 1H, OH).

MS: m/z (%) 280(M⁺, 100); 203(-C₆H₅, 35); 175(-C₆H₅N₂, 55); 147(-C₆H₅N₂, -CO, 20), 119(-C₆H₅N₂, -2CO, 45); 91(-C₆H₅N₂, -3CO, 20).

4b, 7-hydroxy-4-methyl-6-(p-methylphenylazo)coumarin, yield 80 %, mp 175-177°C;

¹H NMR: δ 2.45(s, 3H, CH₃); 2.49(d, 3H, J_{CH₃, 3}=1.0 Hz, 4-CH₃); 6.18(q, 1H, J_{3, CH₃}=1.0 Hz, H-3); 6.89(s, 1H, H-8); 7.35(d, 2H, J_{3', 2'}=8.8 Hz, H-3'); 7.77(d, 2H, J_{2', 3'}=8.8 Hz, H-2'); 8.14(s, 1H, H-5); 13.42(s, 1H, OH).

MS: m/z (%) 294(M⁺, 78); 203(-CH₃C₆H₄, 18); 175(-CH₃C₆H₄N₂, 33); 147(-CH₃C₆H₄N₂, -CO, 18), 119(-C₆H₄N₂, -2CO, 35); 91(-C₆H₄N₂, -3CO, 100).

4c, 7-hydroxy-6-(p-methoxyphenylazo)-4-methylcoumarin, yield 73 %, mp 223-225°C;

¹H NMR: δ 2.49(d, 3H, J_{CH₃, 3}=0.8 Hz, 4-CH₃); 3.91(s, 3H, OCH₃); 6.17(q, 1H, J_{3, CH₃}=0.8 Hz, H-3); 6.88(s, 1H, H-8); 7.03(d, 2H, J_{3', 2'}=8.8 Hz, H-3'); 7.85(d, 2H, J_{2', 3'}=8.8 Hz, H-2'); 8.10(s, 1H, H-5); 13.39(s, 1H, OH).

MS: m/z (%) 310(M⁺, 100); 203(-CH₃OC₆H₄, 7); 175(-CH₃OC₆H₄N₂, 20); 147(-CH₃OC₆H₄N₂, -CO, 7), 119(-CH₃OC₆H₄N₂, -2CO, 20); 91(-CH₃OC₆H₄N₂, -3CO, 15).

4d, 6-(p-chlorophenylazo)-7-hydroxy-4-methylcoumarin, yield 28 %, mp 240-242°C;

¹H NMR: δ 2.50(d, 3H, J_{CH₃, 3}=0.8 Hz, 4-CH₃); 6.21(q, 1H, J_{3, CH₃}=0.8 Hz, H-3); 6.92(s, 1H, H-8); 7.52(d, 2H, J_{3', 2'}=8.8 Hz, H-3'); 7.84(d, 2H, J_{2', 3'}=8.8 Hz, H-2'); 8.17(s, 1H, H-5); 13.12(s, 1H, OH).

MS: m/z (%) 316(M⁺, ³⁷Cl, 35); 314(M⁺, ³⁵Cl, 100); 203(-ClC₆H₄, 37); 175(-ClC₆H₄N₂, 60); 147(-ClC₆H₄N₂, -CO, 26), 119(-ClC₆H₄N₂, -2CO, 55); 91(-ClC₆H₄N₂, -3CO, 32).

4e, 6-(p-bromophenylazo)-7-hydroxy-4-methylcoumarin, yield 25 %, mp 222-224°C;

¹H NMR: δ 2.49(d, 3H, J_{CH₃, 3}=1.0 Hz, 4-CH₃); 6.21(q, 1H, J_{3, CH₃}=0.8 Hz, H-3); 6.91(s, 1H, H-8); 7.64-7.80(m, 4H, H-Ar); 8.17(s, 1H, H-5); 13.12(s, 1H, OH).

MS: m/z (%) 360(M^+ , ^{81}Br , 100); 358(M^+ , ^{79}Br , 92); 203(-BrC₆H₄, 48); 175(-BrC₆H₄N₂, 91); 147 - BrC₆H₄N₂, -CO, 33), 119(-BrC₆H₄N₂, -2CO, 68); 91(-BrC₆H₄N₂, -3CO, 45).

Azocoupling of psoralens (general procedure).

10 mmol of psoralen **6** were dissolved in minimal amount of hot ethanol. The solution was mixed with 20 ml 5 % aqueous NaOH solution (avoid ppt formation), cooled to 0-5°C. Then 15 mmol of aryl diazonium tetrafluoroborate was added to the prepared solution. Resulted reaction mixture was stirred at 0-5°C for 2-4 hours with TLC test (eluent-chloroform) and was then acidified with diluted aqueous HCl solution. Formed precipitate was filtered and purified by recrystallization from ethanol or by column chromatography (eluent-chloroform, silicagel 100/250 mesh). Yields, melting points and ¹H NMR data of prepared psoralens **8a-d** and **11** are listed below.

8a, 4, 4'-dimethyl-5'-phenylazopsoralen, yield 85 %, mp 180-182 °C;

¹H NMR (CDCl₃, J/Hz): δ 2.53(s, 3H, 4-CH₃); 2.73(s, 3H, 4'-CH₃); 6.28(s, 1H, H-3); 7.47(s, 1H, H-8); 7.5(m, Hpara); 7.5(m, Hmeta); 7.83(s, 1H, 5-CH₃); 7.98(m, Hortho).

MS: m/z(%) 318(M^+ , 100).

8b, 4, 4'-dimethyl-5'-(p-methylphenylazo)psoralen, yield 82 %, mp 228-230 °C;

¹H NMR (CDCl₃, J/Hz): 2.42(s, 3H, 4'-CH₃); 2.49(d, 3H, $J_{\text{CH}_3,3}=1.0$, 4-CH₃); 2.67(s, 3H, p-CH₃); 6.23(q, 1H, $J_{3,\text{CH}_3}=1.0$, H-3); 7.28(d, 2H, $J_{\text{m},0}=8.8$, Hortho); 7.45(s, 1H, H-8); 7.761(s, 1H, H-5); 7.85(d, 2H, $J_{0,\text{m}}=8.8$, Hmeta).

MS: m/z(%) 332(M^+ , 100).

8c, 4, 4'-dimethyl-5'-(p-methoxyphenylazo)psoralen, yield 70 %, mp 206-207 °C;

¹H NMR (CDCl₃, J/Hz): 2.50(d, 3H, $J_{\text{CH}_3,3}=1.0$, 4-CH₃); 2.66(s, 3H, 4'-CH₃); 3.89(s, 3H, OCH₃); 6.24(q, 1H, $J_{3,\text{CH}_3}=1.0$, H-3); 6.99(d, 2H, $J_{\text{m},0}=9.0$, Hmeta); 7.46(s, 1H, H-8); 7.758(s, 1H, H-5); 7.95(d, 2H, $J_{0,\text{m}}=9.0$, Hortho).

MS: m/z(%) 348(M^+ , 100).

8d, 5'-(p-chlorophenylazo)-4,4'-dimethylpsoralen, yield 50 %, mp 167-168 °C;

¹H NMR (CDCl₃, J/Hz): 2.54(d, 3H, $J_{\text{CH}_3,3}=1.0$, 4-CH₃); 2.73(s, 3H, 4'-CH₃); 6.30(q, 1H, $J_{3,\text{CH}_3}=1.0$); 7.48(d, 2H, $J_{\text{m},0}=8.8$, Hmeta); 7.50(s, 1H, H-8); 7.85(s, 1H, H-5); 7.93(d, 2H, $J_{0,\text{m}}=8.8$, Hortho).

MS: m/z(%) 352(M^+ , 100).

MS: m/z(%) 352(M^+ , 100).

11, 4, 8-dimethyl-5'-(p-methoxyphenylazo)psoralen, yield 75 %, mp 192-193 °C;

1H NMR (CDCl₃, J/Hz): 2.52(d, 3H, J_{CH3,3}=1.0, 4-CH₃); 2.69(s, 3H, 8-CH₃); 3.92(s, 3H, OCH₃); 6.29(q, 1H, J_{3,CH3}=1.0, H-3); 7.03(d, 2H, J_{m,o}=8.0, Hmeta); 7.34(s, 1H, H-4'); 7.77(s, 1H, H-5); 7.98(d, 2H, J_{o,m}=8.0, Hortho);.

MS: m/z(%) 348(M^+ , 100).

Reduction of arylazocoumarins **4a**.

A mixture of 400mg **4a** and 50 mg of 5% Pd/C in minimal amount of ethanol was heated to 45°C. Hydrogen gas has been passed through the stirred reaction mixture for 3 hours until the solution becomes light green. Then the reaction mixture was filtered and ethanol was evaporated from filtrate. Remained solid mass was recrystallized from ethanol to produce light green crystals. 6-amino-7-hydroxy-4-methylcoumarin **5**, yield 85%, mp 251-253°C;

1H NMR: 2.26(s, 3H, CH₃); 5.95(s, 1H, H-3); 6.56(s, 1H, H-8); 5.90(s, 1H, H-5).

MS: m/z(%) 191(M^+ , 100).

Conclusion

The pyrone ring opening step has been used for regioselective synthesis of 6-arylazo-7-hydroxycoumarins **4** and 5'-arylazopsoralens **8** and **11**.

Acknowledgements

This work was generously funds by the Highest Education State Committee of Russian Federation (program "Fine Organic Synthesis") and by the Otto Bremer Foundation (via Prof. Ed. Carberry project).

Reference

- (1) R. A. Finnegan, K. E. Merkel and N. Black, *J. Pharm. Sci.* **61**, 1599 (1972).
- (2) L. W. Wattenburg, L. K. T. Lam and A. V. Fladmore, *Cancer Res.* **39**, 1651 (1979).
- (3) R.B. Silverman, *J. Am. Chem. Soc.* **103**, 3910 (1981).
- (4) A. Maxwell, *Molecular Microbiology* **9**, 681 (1993).
- (5) J. A. Parrish, R. S. Stern, M. A. Pathak and T. B. Fitzpatrick, in "The Science of Photomedicine", J. D. Regan and J. A. Parrish Eds., Plenum Publishing Co., New York, 595 (1984).

(7) N. M. Shah and D. H. Mehta, *J. Ind. Chem. Soc.* 31, 784 (1954).

(8) A. N. Nesmeyanov, A. F. Vompe, T. S. Zaverich, D. D. Smolin, *J. Gen. Chem. USSR (Engl. Transl.)* 7, 2767 (1937).

(9) Dean R. Bender, David Kanne, Ianice D. Frazier and Henry Rapoport, *J. Org. Chem.* 48, 2709-2719 (1983).

(10) T. S. Gore and P. K. Inamdar, *Indian J. Chem.* 29, 499 (1973).

(11) B. Krishnaswamy, and T. R. Seshadri, *Proc. Indian Acad. Sci.(A)*, 13, 43 (1941).

(12) V. F. Traven, D. V. Kravtchenko, T. A. Chibisova, S. V. Shorshnev, R. Eliason and D. H. Wakefield, *Heterocycl. Communications*, 2, 345 (1996).

(13) V. K. Ahuja, K. L. Kapor and N. K. Ray, *Indian J. Chem.* 11, 458 (1972).

(14) E. Zubia, F. R. Luis, G. M. Massanet and I. G. Collado, *Tetrahedron* 48, 4239 (1992).

(15) N. Cairns, L. M. Harwood, D. P. Astles, and A. Orr, *J. Chem. Soc., Chem. Commun.* 182 (1986).

(16) R. D. Desai and J. V. Parchi, *J. Indian Chem. Soc.* 33, 661 (1956).

(17) J. K. Macleod, B. R. Worth and R. J. Wells, *Aust. J. Chem.* 31, 1533 (1978).

(18) V. F. Traven, R. V. Rozhkov, A. Y. Tolmachev, N. A. Kuznezova, N. Y. Podhalusina and E. A. Carberry, *Heterocycl. Communications* 3, 339 (1997).

(19) K. D. Kaufman, D. J. Erb, T. M. Blok, R. W. Karlson, D. J. Knoechel, L. McBride, and T. Zeitlow, *J. Heterocyclic Chem.* 19, 1051 (1982).

(20) V. V. Somayajulu and N. V. Subba, F. A. Rao, *Sci. Proc. Indian Acad. Sci.* 61, 177 (1965).

Received on August 2, 1998